
Spring semester 2021, SMT-ROB, DISAL-SP150
Start: 22.02.2021

Finish: 11.06.2021

Distributed Model Predictive Control
Architectures for Multi-Rotor Micro Aerial

Vehicles (MAVs)

Jianhao Zheng

Professor: Alcherio Martinoli
Assistant: Kagan Erunsal

This page intentionally left blank.

2

Contents

1 Introduction 4

2 Problem Formulation 6

3 Methodology 8
3.1 Velocity Sharing Based Distributed MPC 8

3.1.1 State Definition . 8
3.1.2 Centralized MPC problem 9
3.1.3 Distributed MPC Architecture 10

3.2 ADMM-based Distributed MPC 12
3.2.1 Notation . 13
3.2.2 Centralized Optimization Problem 13
3.2.3 Problem Decomposition 15

3.3 PSO-based Distributed MPC 17
3.4 Decentralized MPC . 18

4 Experiments and Results 20
4.1 Metrics . 20
4.2 Simulation in MATLAB . 21

4.2.1 Experimental Setup 21
4.2.2 Results and Discussion 22

4.3 Simulation in Webots and ROS Framework 26
4.3.1 Experimental Setup 26
4.3.2 Results and Discussion 27

5 Conclusion 30

Bibliography 31

3

Chapter 1 Introduction

Multi-rotor Micro Aerial Vehicles (MAVs) are drawing growing attention
due to their agility and ability to perform tasks that humans are unable to
do such as infrastructure inspection, search, rescue operations and resources
exploration [1]. Nowadays, one of the most popular topics is the cooperation
strategies of multiple MAVs to perform complex missions. Among them, the
formation control is a basis for these tasks and one efficient method to carry
out them is to adopt a Model Predictive Control (MPC) paradigm.

Centralized, Decentralized and Distributed MPC are the three major
types of MPC architectures commonly utilized for formation control [2].
Compared to Centralized MPC, Decentralized or Distributed strategy can
have inherent advantages such as additional flexibility, robustness and ex-
pandability [3]. There are many successful implementations of Decentralized
MPC for the formations of multi-agent systems. Among those, the leader-
follower formation control by Erunsal et al. [4], dynamic encirclement by
Marasco et al. [5] and formation reconfiguration by Chevet et al. [6] can be
considered.

Since the Distributed MPC leverages communication, there are many
possible network topologies and architectures to be considered. Dunbar
and Murray proposed a distributed implementation of receding horizon con-
trol based-on inputs sharing and proved the stability and continuous fea-
sibility [7]. Liu et al. introduced a Lyapunov-based iterative Distributed
MPC algorithm for coupled nonlinear systems [8]. Van Parys and Goele
Pipeleers presented a novel Distributed MPC strategy for formation con-
trol of multi-vehicle systems and decomposed the system by Alternating
Direction Method of Multipliers (ADMM) [9]. Moreover, Hou et al. pro-
vided a Distributed MPC framework for building control applications [10].
Their framework utilizes Proximal Jacobian ADMM to decompose the cou-
pled constraints and objective function. In Lee et al. [11], a novel dynamic
cooperatively coevolving particle swarm optimization (CCPSO) based Dis-
tributed MPC was proposed to control a multirobot formation.

The main goal of this project is to compare the effectiveness of different
Distributed MPC architectures and a Decentralized MPC schemes proposed
by Erunsal et al. [4]. Three most prominent Distributed MPC structures
for multi-robot formation control are formulated and implemented in MAT-

4

LAB. A leader-follower formation control problem is proposed as the bench-
mark problem. Several metrics regarding to the formation performance and
computational complexity are introduced to do the comparison. Since Dis-
tributed MPC includes communicating information among the agents and
some problems such as delay, packet dropout and jitter commonly exists in
the real experiment, the robustness to communication uncertainty is also
compared among the three types. From MATLAB simulation, the best Dis-
tributed MPC is selected and applied in a high-fidelity, open-source frame-
work consisting of the Webots simulator and the Robotic Operating Systems
(ROS). Finally, the best Distributed MPC architecture in the presence of
communication delay and packet dropout is compared with the Decentral-
ized MPC controller.

5

Chapter 2 Problem Formulation

In this chapter, the dynamic equation of a single drone is defined, sev-
eral assumptions are stated and our benchmark leader-follower formation
problem is described. In the rest part of the report, the following notation
is used. Ni is the set of neighbors of agent i. v[m|n] denotes the value of
variable v at discrete instant m, predicted at time step n. ‖ · ‖ denotes
the Euclidean norm of a vector or the spectral norm of a real matrix and
‖ · ‖P :=

√
xTPx (with P ∈ Rn×n and P � 0) stands for the weighted

Euclidean norm of x ∈ Rn.
Let {n} be the Earth-fixed inertial frame and {b} be the body-fixed

frame of an aerial robotic agent. The state of a single MAV is defined as
follows:

Xi = [xT vT tT wT]T (2.1)

where x ∈ {n} and v ∈ {n} represent the position and linear velocity of
the drone with respect to {n} expressed in {n}, t is the Euler angles and
w ∈ {b} denotes the angular velocities expressed in {b}. Based on this
definition, the 6-DoF rigid body dynamics of the aerial robot can be written
by the following equations [12].

ẋ = v

mv̇ = mg +Rn
bF

ṫ = Tw

Ibẇ = τ −w × Ibw

(2.2)

where m denotes the mass of the airframe, g ∈ {n} represents the grav-
itational acceleration vector, T is the angular transformation matrix, Rn

b

represents the rotation matrix R ∈ SO3 that transforms a vector expression
from {b} to {n}, F := [0 0 Fz] ∈ {b} is the thrust aligned with the body’s
z-axis, τ ∈ {b} denotes the torque applied to the body and Ib is the inertia
of the vehicle with respect to its center of mass.

Despite the traditional model using thrust and torque or propeller speeds
as inputs, our model and inputs can be simplified due to the cascaded control
structure we use. As shown in Figure 2.1, each quadrotor first estimates its
own state. Based on the state estimation, the nonlinear MPC computes the
thrust the drone needs to generate Fz and the reference of Euler angles tref .

6

According to that information, attitude controller calculates the propeller
speeds w and apply it to the quadrotor.

Figure 2.1: Cascaded control/estimation architecture for a single agent

Therefore, Euler angles dynamics are not considered in MPC controller.
The input we compute in the nonlinear MPC is the reference Euler angles
tref and the thrust along the z-axis of the drone’s local coordination Fz.
The dynamic model used in MPC is:

ẋ = v

mv̇ = mg +Rn
bF

ṫ =
1

τ
(ktref − t)

(2.3)

where τ is the time constant and kL is the gain of the first order dynamical
model for roll, pitch and yaw angles.

To reduce the computational burden, our benchmark leader-follower con-
trol problem consists of one leader and two followers. Each of the control
architectures, however, can be generalized to control more followers. Only
the leader has access to its absolute position by a global localization system.
Hence, the leader is responsible for the trajectory tracking activity. Since
only three vehicles are involved, all the rest agents are considered to be the
neighbors of a follower, i.e. NL = {f1, f2},Nf1 = {L, f2},Nf2 = {L, f1}.
Meanwhile, all agents are assumed to be equipped with an optic flow-sonar
sensor couple to obtain linear velocities and an IMU to acquire linear acceler-
ations, rotational velocities and Euler angles. It is assumed that all followers
can measure the inter-vehicle positions and orientations of neighbor vehicles
by an on-board relative localization system. All sensors are characterized by
zero-mean Gaussian noise. Therefore, an Extended Kalman Filter (EKF)
is implemented for each agent to fuse the sensor information and carry out
the state estimation. Finally, each pair of agents can communicate informa-
tion with each other. Possible communication delays and packet losses are
considered in the simulation.

In the benchmark test problem, the leader is considered as a separate
and independent trajectory tracking agent. Though the two followers have
no information about the trajectory, they will follow the leader to navigate
along the reference by trying to maintain the formation structure. At each
time step, the controllers of the followers attempt to control the agents to
keep the desired formation structure (i.e. xj − xi = ∆xref,ij ,∀j ∈ Ni).

7

Chapter 3 Methodology

In this chapter, three types of Distributed MPC for multi-agents forma-
tion control is formulated. The first type decomposes the coupled system
by sharing the estimated velocity with their neighbors. Additional slack
variables are introduced and ADMM is implemented to distribute the cen-
tralized problem in the second type of Distributed MPC. In the third type,
a stochastic optimization algorithm, PSO, is applied to solve the MPC prob-
lem.

3.1 Velocity Sharing Based Distributed MPC

In most literature about information sharing based Distributed MPC [7,
13], the estimated input is shared with their neighbors. Given the dynamic
model of their neighbors and the estimated input, the coupled state of the
neighbors is computed in the agents’ subsystem. In the formation control
problem, the only coupled state is the neighbor’s linear velocity. Therefore,
we can directly share the estimated velocity instead of saving the computa-
tional burden in each subsystem, which leads to our first type of Distributed
MPC effort.

3.1.1 State Definition

Since the follower can not access to its own absolute position by our
assumption, we need to redefine the state of the followers, while the state
of the follower can be the same as that in Equation 2.1. To clarify, new
notation ξi will be used to represent the state of agent i in the rest part of
the report. The state and input of leader and followers are defined as:

ξL = [xL
T vL

T tL
T]T

ξf1
= [vf1

T tf1
T ∆xf1,L

T ∆xf1,f2
T]T

ξf2
= [vf2

T tf2
T ∆xf2,L

T ∆xf2,f1
T]T

(3.1)

where ξL is the state of the leader, ξf1
and ξf2

are the state of follower-1 and
follower-2 and ∆xi,j is the relative position of vehicle j respect to vehicle i.

8

Jianhao Zheng: Distributed MPC for leader-follower formation control

As the yaw angle is part of the requirement of formation control, the
desired yaw angle is directly sent to the attitude controller. The input of
each agent computed by MPC controller is:

ui = [θref,i φref,i Fi]T (3.2)

where θref,i and φref,i is the desired roll and pitch angle.
The dynamic equation of the state of the leader can directly refer to

Equation 2.3. Regarding to the followers, the dynamic of relative position
can simply be derived by the difference of positions of the two agents. Hence,
the dynamic model of the followers can be defined as:

mv̇i = mg +Rn
bi
F i

ṫi =
1

τi
(kitref,i − ti)

∆ẋi,j = ẋj − ẋi = vj − vi

(3.3)

3.1.2 Centralized MPC problem

Before illustrating the structure of the Distributed MPC, let’s first write
down the centralized MPC problem. The cost function of the leader and the
followers are defined as:

min
uL,uf1

,uf2

JL(ξL,uL) + Jf1(ξf1
,uf1) + Jf2(ξf2

,uf2) (3.4)

subject to the following constraints,

ξL[k + n+ 1|k] = fL(ξL[k + n|k],uL[k + n|k])

ξf1
[k + n+ 1|k] = ff1(ξf1

[k + n|k],uf1 [k + n|k],vL[k + n|k],vf2 [k + n|k])

ξf2
[k + n+ 1|k] = ff2(ξf1

[k + n|k],uf1 [k + n|k],vL[k + n|k],vf2 [k + n|k])

ξi[k + n|k] ∈ Ξ, ui[k + n|k] ∈ U , ξi[k|k] = ξ′i[k]

n ∈ {0, 1, ..., N}, i ∈ {L, f1, f2}
(3.5)

where ξi = [ξTi [k|k], ξTi [k+1|k], ... , ξTi [k+N |k]]T and ui = [uTi [k|k], uTi [k+
1|k], ... , uTi [k + N − 1|k]]T are the compact expression of the state and
input in the whole horizon, ξ′i[k] denotes the initial state estimated by EKF
at time k, fL is the discrete version of dynamic equation of the leader stated
in Equation 2.3, ff1 and ff2 are the discrete version of dynamic equation
of the followers illustrated in Equation 3.3, Ξ and U are the bounding set
of state and input due to the safety constraints and the physical limits of the
propellers and electric motors on the aerial agent, N is the prediction (and
control) horizon and JL, Jf1 and Jf2 denotes respectively the cost function

9

Jianhao Zheng: Distributed MPC for leader-follower formation control

of the leader, follower-1 and follower-2, which is defined as the following:

Jk,L(ξL[k + n|k],uL[k + n|k]) =

‖xL[k + n|k]− xref,L‖Qx,L
+ ‖vL[k + n|k]‖Qv,L

+

‖uL[k + n|k]‖Qu,L
+ ‖∆uL[k + n|k]‖Q∆u,L

JN,L(ξL[k +N |k]) =

‖xL[k +N |k]− xref,L‖QxN
,L + ‖vL[k +N |k]‖QvN

,L

JL(ξL,uL) =
N−1∑
n=0

Jk,L(ξL[k + n|k],uL[k + n|k]) + JN,L(ξL[k +N |k])

(3.6)
where xref,L is the trajectory reference and ∆uL[k + n|k] = uL[k + n|k] −
uL[k+ n|k− 1] is the deviation of the computed input from that computed
in the previous time step, this term is one of the key requirements for sta-
bility [7].

The cost function of the follower-1 and the follower-2 are nearly the same.
The definition is the following:

Jk,i(ξi[k + n|k],ui[k + n|k]) =∑
j∈Ni

‖∆xi,j [k + n|k]−∆xref,ij‖Q∆x,i
+

∑
j∈Ni

‖vi[k + n|k]− vj [k + n|k]‖Qv,i
+ ‖ui[k + n|k]‖Qu,i

JN,i(ξi[k +N |k]) =∑
j∈Ni

‖∆xi,j [k +N |k]−∆xref,ij‖Q∆xN ,i
+

∑
j∈Ni

‖vi[k +N |k]− vj [k +N |k]‖QvN ,i

Ji(ξi,ui) =
N−1∑
n=0

Jk,i(ξi[k + n|k],ui[k + n|k]) + JN,i(ξi[k +N |k])

(3.7)

where the index i here can be either f1 or f2 and ∆xref,ij is the desired
relative displacement of the neighbor j to agent i.

3.1.3 Distributed MPC Architecture

From the centralized optimization problem in Equation 3.4 and Equa-
tion 3.5, the leader can be decoupled directly from the whole system. The
followers, however, have the coupled term in their dynamic equation. To
decompose the whole system, the neighbor’s future velocity is required in
order to estimate the relative displacement of the neighbors to the follower.

10

Jianhao Zheng: Distributed MPC for leader-follower formation control

The strategy of the velocity sharing based Distributed MPC is to communi-
cate the predicted future velocity of each agent with their neighbors. Then,
the followers utilized the velocity they received at the previous time step to
solve the MPC problem.

To prevent confusion, new notations are introduced as the following:
v̄i[k] = [v̄Ti [k|k], v̄Ti [k + 1|k], ... , v̄Ti [k + N |k]]T represents the predicted
velocity of agent i computed by nonlinear MPC at time step k. v̂i,j [k] =
[v̂Ti,j [k|k], v̂Ti,j [k+ 1|k], ... , v̂Ti,j [k+N |k]]T denotes the predicted velocity of
agent j processed in the MPC controller of agent i at time step k.

At each time step, the followers will receive the predicted future velocity
from their neighbors. Nevertheless, these information is computed at the
previous step. The estimated velocity of the last horizon in the current step
isn’t included. Hence, the velocity in the last two horizons are assumed to
be constant and the transmission between v̄i[k − 1] and v̂i[k] is defined as
follows:

v̂i,j [k + n|k] =

{
v̄j [k + n|k − 1], n ∈ [0, N − 1]

v̄j [k +N − 1|k − 1], n = N
(3.8)

With the predicted velocity of neighbors, the whole system can be decom-
posed. The leader can be directly decomposed without any modifications.
The MPC problem it solves at each times step is defined as:

min
uL

JL(ξL,uL)

s.t. ξL[k + n+ 1|k] = fL(ξL[k + n|k],uL[k + n|k])

ξL[k + n|k] ∈ Ξ, uL[k + n|k] ∈ U
ξL[k|k] = ξ′L[k], n ∈ {0, 1, ..., N}

(3.9)

The optimization problem solved in the follower controller in Equa-
tion 3.10. The index i can be either f1 or f2 and j1, j2 ∈ Ni are the
neighbors of agent i.

min
ui

Ji(ξi,ui)

s.t. ξi[k + n+ 1|k] = fi(ξi[k + n|k],ui[k + n|k], v̂i,j1 [k + n|k], v̂i,j2 [k + n|k])

ξi[k + n|k] ∈ Ξ, ui[k + n|k] ∈ U
ξi[k|k] = ξ′i[k], n ∈ {0, 1, ..., N}

(3.10)
Algorithm 1 summarizes the velocity sharing based Distributed MPC

strategy. The followers start with the assumption that the initial future
velocity of their neighbors is 0. At each time step, all agents first esti-
mate their own state by the sensors and EKF. Then, each follower receives
the predicted future velocity of their neighbors and obtain v̂i,j1 [k], v̂i,j2 [k]
according to Equation 3.8. Based on those information, all agents solve

11

Jianhao Zheng: Distributed MPC for leader-follower formation control

their local optimization problem as stated in Equation 3.9 and Equa-
tion 3.10. Such MPC optimization problem can be solved either by a MPC
solver or a nonlinear programming solver. After solving the optimization
problem, all agents apply the first control input in their plant and transmit
their predicted future velocity to the neighbors. Then, the whole system
moves to next time step. Such loop will continue until the leader reaches
the final destination.

Algorithm 1: Velocity sharing based Distributed MPC

1 Initialization: at time k0

2 Each follower i assumes v̂i,j1 [0] = 0, v̂i,j2 [0] = 0.
3 Main loop: at any time k, k > k0

4 Each robot estimates ξ′[k] by EKF.
5 Each follower receives v̄j1 [k − 1], v̄j2 [k − 1].
6 Each follower i predicts v̂i,j1 [k], v̂i,j2 [k] by Equation 3.8.
7 All robots solve Equation 3.9 or Equation 3.10.
8 Each agent i apply the first computed control input u∗i [k|k].
9 Each drone i transmit v̄i[k] to their neighbors.

10 Terminate when leader reaches the final destination.

3.2 ADMM-based Distributed MPC

Inspired by Van Parys [9], this second type of Distributed MPC intro-
duces some slack variables so that we can first separate the cost function
into two parts. The terms that can be decoupled will be minimized in primal
variables and the coupled terms will be handled in slack variables. Based
on that, the whole system is decomposed and each agent can locally solve
its sub-system.

The decomposition procedure in this section takes the advantage of the
alternating direction method of multipliers (ADMM), a simple but powerful
algorithm that is well suited to distributed optimization problem [14]. The
algorithm solves problems in the form:

minimize f(x) + g(z)

subject to Ax+Bz = c
(3.11)

the corresponding augmented Lagrangian is:

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖22 (3.12)

where x and z are called primal variable and y is the dual variable.
The algorithm solves the problem by iteratively updating the primal and

12

Jianhao Zheng: Distributed MPC for leader-follower formation control

dual variables:
xk+1 := arg min

x
Lρ(x, z

k, yk)

zk+1 := arg min
x

Lρ(x
k+1, z, yk)

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c)

(3.13)

3.2.1 Notation

In this section, some additional variables are introduced. We first stack
the state and input of a single agent into a new variable yi:

yi = [ξi
T ui

T]T , ∀i ∈ {L, f1, f2} (3.14)

As we can see in the previous section, the coupled state is the relative
position of the followers and each follower needs the velocity of their neigh-
bors to decompose the whole problem. Therefore, several slack variables,
zf1 , zf1,f2 , zf1,L, zf2 , zf2,f1 , zf2,L are introduced. For those additional slack
variables with two indexes, i.e. zi,j , the first index i means in which vehicle
these variables are updated, while the second j means zi,j should represent
the velocity of the j vehicle, i.e. it should satisfy zi,j = vj . The formal
definition of the constraints of these slack variables are:

zf1 := vf1 , zf2,f1 := vf1

zf2 := vf2 , zf1,f2 := vf2

zf1,L := vL, zf2,L := vL

(3.15)

3.2.2 Centralized Optimization Problem

With the introduction of the slack variables, the objective function stated
in Equation 3.4 can be separated by decoupled terms expressed in primal
variables and coupled terms expressed in slack variables. Therefore, the cost
function of the leader, which has no coupled term, can remain the same as
that in Equation 3.6.

J ′k,L(yL[k + n|k]) =Jk,L(ξL[k + n|k],uL[k + n|k])

J ′N,L(yL[k +N |k]) =JN,L(ξL[k +N |k])
(3.16)

The cost function of the primal variables of the follower has to remove
all the coupled term:

J ′k,i(yi) =‖ui[k + n|k]‖Qu,i , J ′N,i(yi) = 0, ∀i ∈ {f1, f2} (3.17)

The overall cost function for primal variables are defined as:

J ′i =
N−1∑
n=0

J ′k,i(yi) + J ′N,i(yi), ∀i ∈ {L, f1, f2} (3.18)

13

Jianhao Zheng: Distributed MPC for leader-follower formation control

The coupled terms for formation requirement that removed from the
objective function of the followers are defined in the cost function of the
slack variables:

Gij(zi, zi,j) =

N∑
n=1

‖[∆xij [k|k] +

n∑
t=0

(zi,j [k + t|k]− zi[k + t|k])∆t]

−∆xdesireij [k + n+ 1|k]‖2∆x

(3.19)

where ∆t is the time duration of each time step, i.e. dt = t[k+ 1|k]− t[k|k].
With all these definitions, the centralized optimization problem can be

rewritten as the following:

min
yi,zi,zi,j

i∈{L,f1,f2},j∈Ni

J ′L(yL) + J ′f1
(yf1

) + J ′f2
(yf2

) +Gf1,f2(zf1 , zf1,f2)+

Gf1,L(zf1 , zf1,L) +Gf2,f1(zf2 , zf2,f1) +Gf2,L(zf2 , zf2,L)
(3.20)

subject to,
yi ∈ Y i

zi = vi, zi,j = vj , j ∈ Ni
∀i ∈ {L, f1, f2}

(3.21)

where Y i is the compact set that contained all the possible values of yi
satisfying the constraints in Equation 3.5. The second constraint is how
we define the slack variables in Equation 3.15. It can also be written as
zi = Piyi, zi,j = Pjyj , j ∈ Ni where Pi is the indicator matrix to extract
the velocity term from yi.

The difference of velocity between an agent and its neighbors is not pe-
nalized in this new centralized problem as an improvement of formation con-
trol performance is observed in the simulation when removing these terms.
Except that, the new centralized optimization problem is equivalent to that
described in previous section.

Because the leader is not responsible for maintaining the formation, there
won’t be any slack variable and dual variable updated in leader and the
constraints zf1,L := vL, zf2,L := vL will be strictly satisfied. The rest
four slack variable constraints, however, will be dualized and that’s how
we decompose the whole system by ADMM. The augmented Lagrangian

14

Jianhao Zheng: Distributed MPC for leader-follower formation control

function of the centralized problem is:

Lρ =J ′L(yL) +
∑

i∈{f1,f2}

(J ′i(yi) + λTi (vi − zi) +
ρ

2
‖vi − zi‖22+

∑
j∈Ni

Gi,j(zi, zi,j) + λTi,j(vj − zi,j) +
ρ

2
‖vj − zi,j‖22)

=
∑

i∈{L,f1,f2}

Lρ,i(yi, zi,λi,vj , zi,j ,λi,j)

=
∑

i∈{L,f1,f2}

Lρ,i(yi, zi,λi,vi, zj,i,λj,i)

(3.22)

where λi and λi,j represents the dual variables associated with the dualized
constraints and ρ is the penalty parameter of ADMM.

3.2.3 Problem Decomposition

For better illustration, x̃ will represent that the variable x is obtained
by communication from the neighbors.

The last line in Equation. 3.22 can be decomposed for each agent to
operate the primal variable y update and the second last line can be sepa-
rated to local system for the slack variable z update. To be more specific, the
leader and follower will update their primal variable by solving the following
optimization problem:

yL[k] = arg min
yL∈Y L

J ′L(yL)

yf1
[k] = arg min

yf1
∈Y f1

J ′f1
(yf1

) + λTf1
(vf1 − zf1 [k − 1]) +

ρ

2
‖vf1 − zf1 [k − 1]‖22

+ λ̃
T
f2,f1

[k − 1](vf1 − z̃f2,f1 [k − 1]) +
ρ

2
‖vf1 − z̃f2,f1 [k − 1]‖22

yf2
[k] = arg min

yf2
∈Y f2

J ′f2
(yf2

) + λTf2
(vf2 − zf2 [k − 1]) +

ρ

2
‖vf1 − zf2 [k − 1]‖22

+ λ̃
T
f1,f2

[k − 1](vf2 − z̃f1,f2 [k − 1]) +
ρ

2
‖vf2 − z̃f1,f2 [k − 1]‖22

(3.23)
The leader has no slack variable to update. The followers will update

their slack variables according to the following equations.
For follower-1:

(zf1 [k], zf1,f2 [k]) = arg min
zf1

,zf1,f2

Gf1,L(zf1 , zf1,L) +Gf1,f2(zf1 , zf1,f2)

+ λTf1
(vf1 [k]− zf1) + λTf1,f2

(ṽf2 [k]− zf1,f2)

+
ρ

2
‖vf1 [k]− zf1‖22 +

ρ

2
‖ṽf2 [k]− zf1,f2‖22

subject to zf1,L := ṽL[k]

(3.24)

15

Jianhao Zheng: Distributed MPC for leader-follower formation control

For follower-2:

(zf2 [k], zf2,f1 [k]) = arg min
zf2

,zf2,f1

Gf2,L(zf2 , zf2,L) +Gf2,f1(zf2 , zf2,f1)

+ λTf2
(vf2 [k]− zf2) + λTf2,f1

(ṽf1 [k]− zf2,f1)

+
ρ

2
‖vf2 [k]− zf2‖22 +

ρ

2
‖ṽf1 [k]− zf2,f1‖22

subject to zf2,L := ṽL[k]

(3.25)

The final step is to update the dual variable in the two followers.
For follower-1:

λf1 [k] = λf1 [k − 1] + ρ(vf1 [k]− zf1 [k])

λf1,f2 [k] = λf1,f2 [k − 1] + ρ(ṽf2 [k − 1]− zf1,f2 [k])
(3.26)

For follower-2:

λf2 [k] = λf2 [k − 1] + ρ(vf2 [k]− zf2 [k])

λf2,f1 [k] = λf2,f1 [k − 1] + ρ(ṽf1 [k − 1]− zf2,f1 [k])
(3.27)

The architecture of the ADMM-based Distributed MPC is summarized
in Algorithm 2. At each time step k, all agents first estimate their own
state by the sensors and EKF. The leader simply does its own reference
tracking without receiving anything from the followers. Follower-1 will re-
ceive z̃f2,f1 [k − 1] and λ̃f2,f1 [k − 1] from follower-2. Follower-2 will receive
z̃f1,f2 [k−1] and λ̃f1,f2 [k−1] from follower-1. Then, both followers and leader
update their primal variable yi[k] according to Equation 3.23. They will
extract the predicted future velocity vi[k] from yi[k] and send it to their
neighbors. After that, follower-1 will receive ṽL[k] from leader and ṽf2 [k]
from follower-2, update the slack variable zf1 [k] and zf1,f2 [k] by Equa-
tion 3.24 and compute the dual variable λf1 [k] and λf1,f2 [k] according
to Equation 3.26. Follower-2 will receive ṽL[k] from leader and ṽf1 [k]
from follower-1, calculate the slack variable zf2 [k] and zf2,f1 [k] based on
Equation 3.25 and update the dual variable λf2 [k] and λf2,f1 [k] by Equa-
tion 3.27. Then, the newly updated slack variable and dual variable will
be transmitted to their neighbors. Finally, each drone will extract and im-
plement the first optimal inputs u∗i [k|k] from yi[k] and go to the next time
step.

16

Jianhao Zheng: Distributed MPC for leader-follower formation control

Algorithm 2: ADMM-based Distributed MPC

1 Initialization: at time k0

2 Agent i assumes ṽL[0], ṽj [0], z̃j,i[0] and λ̃j,i[0] all to be 0, j ∈ Ni.
3 Main loop: at any time k, k > k0

4 Each robot estimates ξ′[k] by EKF.

5 Follower i receives z̃j,i[k − 1] and λ̃j,i[k − 1] from neighbor j.
6 Each agent i updates yi[k] by Equation 3.23.
7 Each agent i sends vi[k] to their neighbors.
8 Follower i receives ṽj [k] from neighbor j.
9 Each follower update the slack variable and dual variable

according to Equations 3.24 to 3.27
10 Follower i transmits zi,j [k] and λi,j [k] to followerj.
11 Each agent i apply the first computed control input u∗i [k|k].
12 Terminate when leader reaches the final destination.

3.3 PSO-based Distributed MPC

The third type is similar to the velocity sharing based Distributed MPC
architecture, the main difference is that Particle Swarm Optimization (PSO)
is used to solve the optimization problem. PSO is a population-based meta-
heuristic optimization algorithm proposed in [15]. Each particle in PSO is
considered to be a potential solution, and navigates with an assigned ran-
domized velocity through the search space. The position of each particle
is updated iteratively depending on the experiences of it and its neighbors,
which are called personal best (pbest) and global best (gbest).

To distinguish the notations in the previous section, the notation used
in this section is a bit different from those are commonly used to describe
PSO algorithm. Let ril and hil denote the position and velocity of the ith
particle, pil represents its personal best solution and pgl is the global best in
the swarm. The subscript l here is the index indicating the iteration number.
At each iteration, the velocity and position of each particle are updated as
following:

hil+1 = ωlh
i
l + c1R1(pil − ril) + c2R2(pgl − r

i
l)

ril+1 = ril + hil+1

(3.28)

where ωl is the inertia, c1 and c2 are the acceleration coefficients, R1 and R2

are the diagonal matrices where each diagonal element is a random number
uniformly generated within [0, 1]. After generating the new position of each
particle, their fitness will be reevaluated and the personal best and the global
best will be updated.

Consider the centralized optimization problem described in Equation 3.4
and 3.5, each candidate particle will represent the predicted control input
sequence of the leader and the two followers. In that case, the dimension of

17

Jianhao Zheng: Distributed MPC for leader-follower formation control

one particle would be a large number and PSO will require more iterations
to reach a good solution. In order to distribute the centralized problem,
three swarms with each representing the control input sequence of a single
agent are generated and used to search for the optimized solution in each
agent. According to [11], The conventional PSO-based MPC approach de-
compose the coupled dynamic by communicating the global best particle,
i.e. the optimal input sequence, among the agents. As discussed in Sec-
tion 3.1, only sharing predicted velocity is sufficient and can reduce the
computational complexity in each subsystem. Hence, only velocity will be
shared in our PSO-based Distributed MPC.

Illustrated in Algorithm 3, At each time step, all agents first estimate
their current state by EKF. Then, the followers receive the predicted velocity
of their neighbors v̄j [k − 1] via communication and obtained v̂i,j [k] using
same method as the first type. Based on these information, the centralized
optimization is separated into three sub-problem as stated in Equation 3.9
and Equation 3.10. Each agent will generate a swarm and search for the
optimal solution of its corresponding sub-problem by PSO. After satisfying
a terminal criterion, PSO will output the global best particle with minimum
cost function value and that will be the optimal input sequence u∗i . Based
on the input sequence, each robot will predict their future velocity v̄i[k] by
the dynamic equation 2.3 and transmit it to its neighbors. Finally, both
leader and followers apply the first of the input sequence, i.e. u∗i [k|k] in the
real drone and turn to the next time step.

Algorithm 3: PSO-based Distributed MPC

1 Initialization: at time k0

2 Each follower i assumes v̂i,j1 [0] = 0, v̂i,j2 [0] = 0.
3 Main loop: at any time k, k > k0

4 Each robot estimates ξ[0] by EKF.
5 Each follower receives v̄j1 [k − 1], v̄j2 [k − 1].
6 Each follower i predicts v̂i,j1 [k], v̂i,j2 [k] by Equation 3.8.
7 All robots generate a swarm of candidate particles and run PSO

on the robot’s own optimization problem as stated in
Equation 3.9 or Equation 3.10.

8 Each agent i apply the first computed control input u∗i [k|k].
9 Each drone i transmit v̄i[k] to their neighbors.

10 Terminate when leader reaches the final destination.

3.4 Decentralized MPC

Formulating and implementing the decentralized MPC structure is not
part of this semester project, but such controller will be used to compare with
the best type of Distributed MPC in the Webots-ROS simulater. Hence, the
idea of the Decentralized MPC will be briefly introduced in this section.

18

Jianhao Zheng: Distributed MPC for leader-follower formation control

In decentralized MPC, all agents are totally separated. It is assumed that
there is no explicit communication between agents. All the state of the agent
and their neighbors are coming from sensor and EKF. Different from the
distributed MPC, followers cannot obtain the neighbors future velocity by
communication in Decentralized MPC. Therefore, the strategy to decouple
the coupled state of relative position is to estimate the neighbors’ current
velocity by EKF at each time step. Then, assuming the neighbor will moves
in constant velocity in the future, i.e. v̂i,j [k + n|k] = vj [k|k], ∀n ∈ [0, N].

The rest strategy is very similar to that of the velocity sharing based
Distributed MPC, which can be referred to the work by Erunsal et al. [4].

19

Chapter 4 Experiments and Re-
sults

Several experiments have been simulated to compare the performance of
different types of Distributed MPC and Decentralized MPC. The simulation
experiments on the three types of Distributed MPC have been carried out
in MATLAB 2020b with an Intel i7-8550U processor. In Webots-ROS sim-
ulation, the Webots version is R2020b and ROS melodic 1.14.11 has been
used.

4.1 Metrics

Before showing the results, several metrics are introduced to compare
the different types of controller.

• The overall average relative formation error e is defined as:

e =
1

N

N∑
k=1

1

M

M∑
i=1

∑
j∈Ni

||xi(k)− xj(k)−∆xdi,j(k)||2
||∆xdi,j(k)||2

(4.1)

where N is the total number of time steps, M is the number of followers (in
our case M is 2), xi(k) is the position of drone i at time step k and ∆xdi,j(k)
is the desired relative displacement between drone i and j.

• The average relative formation error at time step k is defined as:

e(k) =
1

M

M∑
i=1

∑
j∈Ni

||xi(k)− xj(k)−∆xdi,j(k)||2
||∆xdi,j(k)||2

(4.2)

• The definition of the formation maintenance error eij(k) is:

eij(k) = ||xi(k)− xj(k)−∆xdi,j(k)||2 (4.3)

• Pij(ε) represents the probability of degradation. A time step is defined
as degradation when the relative formation error exceeds threshold ε
at that time step. The formal definition is:

20

Jianhao Zheng: Distributed MPC for leader-follower formation control

Pij(ε) =

∑N
k=1Xk,ε

N
(4.4)

where Xk,ε is an indicator function:

Xk,ε =

{
1 eij(k) > ε

0 otherwise
(4.5)

4.2 Simulation in MATLAB

4.2.1 Experimental Setup

The ACADO toolkit with code generation by Houska et al. [16] is selected
as the solver for the velocity sharing based Distributed MPC. Regarding to
the ADMM-based Distributed MPC, the primal variable update as stated in
Equation 3.23 is a nonlinear programming and is solved by the fmincon
function in Optimization Toolbox of MATLAB. The slack variable update
process in Equation 3.24 and 3.25 is a Quadratic Programming (QP)
problem. This is solved the quadprog function in Optimization Toolbox
of MATLAB. Besides, experiments on velocity sharing based Distributed
MPC using fmincon as the solver have also been operated in order to
fairly compare the two architectures. Finally, the PSO-based Distributed
MPC select particleswarm function in Global Optimization Toolbox
of MATLAB as the solver.

Figure 4.1: Reference trajectory in MATLAB. A: Starting point, B: Linear
motion (2 m/s), C: Agile movement with a sudden turning and increase of
height, D: Spiral motion (1.88 m/s), E: Destination.

The scenario we simluate in MATLAB consists of three vehicles, one

21

Jianhao Zheng: Distributed MPC for leader-follower formation control

serving as leader and the other two as followers. There’s no obstacle in the
scenario and the reference trajectory we run is shown in Figure 4.1. As
mentioned in the previous sections, all sensors have zero-mean noise. The
standard deviation of the noise and other selected simulation parameters can
refer to Table 4.1. To test the robustness to communication inaccuracy,
communication delay and packet losses has been implemented and their
definition is as belows:

yrx(k) = ytx(k − τ)

P (ytx(k) isn’t received) = θ
(4.6)

where yrx(k) denotes the information received in time step k, ytx(k) denotes
the information transmitted in time step k, τ is the delay time and θ is packet
loss probability. The experiments with different number of time steps delay
have been simulated and there’s a 5% of packet loss in every experiment.
We run each simulation with different controller and delay 5 times in total.
The mean and standard deviations are depicted in the following section.

Table 4.1: Selected simulation parameters.
General Parameters Value Unit

Vehicle length and mass 0.21, 1.37 m, kg

Duration of each time step 0.05 s

Formation ref. F1 w.r.t L [-1 -0.5 -0.5], 0 m, rad

Formation ref. F1 w.r.t. F2 [0 -1 0], 0 m, rad

Formation ref. F2 w.r.t. L [-1 0.5 -0.5], 0 m, rad

Std. dev. of optic flow noise 0.25 m/s

Std. dev. of IMU noise (Attitude) 0.005 deg

Std. dev. of gyro noise 1 deg/s

Std. dev. of rel. loc. unit noise 0.025, 1 m, deg

MPC horizon length 15 -

Initial and running KKT tolerance for ACADO 10−3, 10 -

Function tolerance (fmincon, particleswarm) 10−2, 10−2 -

4.2.2 Results and Discussion

The overall average relative formation error with different constant delay
can be seen from Table 4.2.2. With perfect communication (no delay ex-
ists), the ADMM-based Distributed MPC has less overall average formation
error than the velocity sharing based Distributed MPC if using same solver.
However, the first type using ACADO code generator as the solver has the
least formation among all the candidates, while PSO performs worst. The
evolution of the average relative formation error without the presence of
communication problem is illustrated in Figure 4.2. In most of time, the

22

Jianhao Zheng: Distributed MPC for leader-follower formation control

PSO-based type has the greatest mean of relative error and the standard
deviation is also higher than the rest. The velocity sharing type solved with
fmincon performs the second worst. The mean of relative error in ADMM-
based type is sometimes close to the first type with ACADO, but sometimes
it has higher error.

Table 4.2: Mean of overall average relative formation error of the five simu-
lation experiments with different constant delay.

Delay
(time steps)

Vel-share
(ACADO)

Vel-share
(fmincon)

ADMM-based PSO-based

0 0.1164 0.1834 0.1554 0.2125

3 0.1273 0.1764 0.1923 0.2155

5 0.1404 0.1784 0.2398 0.2056

7 0.1565 0.1823 0.2794 0.2042

10 0.1911 0.1928 0.3512 0.2100

13 0.2131 0.2093 0.4153 0.2309

15 0.2387 0.2175 0.4602 0.2376

Figure 4.2: Average relative formation error with 0 delay.

The error norms of the relative position vectors of each pairs of the neigh-
bors are given in Figure 4.3. With the detailed figure, the main difference
is on the leader to follower formation maintenance where we can clearly
see the outperformance of the ADMM-based type and velocity sharing type
with ACADO. Regarding to the follower to follower formations, the four
controllers have very close error.

Such phenomenon can also be observed in Figure 4.4. The percentage
of degradation time for leader to leader formation is very close for the four
controllers even with different thresholds. However, in the leader to follower,
the advantage of velocity sharing with ACADO and ADMM-based type is
very clear.

23

Jianhao Zheng: Distributed MPC for leader-follower formation control

Figure 4.3: Formation maintenance errors for leader to follower-1, follower-2
to follower-1, leader to follower-2 and follower-1 to follower-2.

Figure 4.4: Percentage of degradation time with different thresholds for
leader to follower-1, follower-2 to follower-1, leader to follower-2 and follower-
1 to follower-2.

24

Jianhao Zheng: Distributed MPC for leader-follower formation control

According to the performance of the first type with different solvers,
fmincon solver is far less accurate than the ACADO toolkit with code gen-
eration. With the same solver, the ADMM-based has better performance
than the velocity sharing one as the complex nonlinear optimization problem
is separated into two parts to solve and more communication is involved in
this ADMM-based type. Regarding to PSO-based type, both the mean and
the standard deviation of the error is higher than the rest. This is probably
because PSO is a stochastic optimization algorithm and is not suitable in
this kind of problem where the deterministic solver can work.

As illustrated in Figure 4.5, the computational time of PSO-based is the
highest. Even though the whole centralized problem is separated to three
sub-problems, the dimension of each particles is still very large and PSO
requires each candidate to randomly search in the possible region, which
results in the high computational time it requires.

The first two types using fmincon as the solver uses less time to find the
optimal solution. The average of computational time for ADMM-based is
0.6191s and that for velocity sharing is 0.1597s. However, that is still not
sufficient to implement in the real case as the duration of each time step is
0.05s. Velocity sharing type with ACADO, whose average time is 0.0013s,
can satisfy that requirement.

This is because in Acado, we export highly efficient and self-contained
C code that is tailored to our MPC problem formulations. Computational
speed is increased by hard-coding all problem dimensions, avoiding dynamic
memory allocations, loop unrolling, symbolic simplifications and the use of
a fixed-step integrator. This leads to significant speed-ups compared to
generic implementations [17, 18].

Figure 4.5: Computational time of follower-1 at each time step.

The mean and standard deviations of the overall average formation error
with different communication delay are depicted in Figure 4.6. The error
of the ADMM-based MPC increased significantly with the communication

25

Jianhao Zheng: Distributed MPC for leader-follower formation control

delay while the error of the rest three doesn’t suffer huge increase. It’s quite
reasonable as the information shared in this type is far more than the rest,
which makes it very sensitive to the communication quality.

Figure 4.6: Overall average relative formation error with different commu-
nication delay (constant).

In summary, the PSO-based MPC has the worst performance on forma-
tion maintenance though it is very robust to the communication delay. The
ADMM-based MPC has better performance on formation control than the
velocity sharing based type. However, it is very sensitive to the communi-
cation quality and requires more computational time. Moreover, the veloc-
ity sharing type using ACADO code generate has far better performance
than the ADMM-based type even with perfect communication. Considering
both architecture performance and solver ability, we will choose the veloc-
ity sharing based one to simulate in the Webots-ROS framework. But, the
ADMM-based Distributed MPC is also promising.

4.3 Simulation in Webots and ROS Framework

4.3.1 Experimental Setup

In this Webots-ROS simulator, the best Distributed MPC scheme, veloc-
ity sharing based Distributed MPC, and the Decentralized MPC controller
proposed by Erunsal et al. [4] have been compared. Both controller use the
ACADO toolkit as the solver.

Similar to that in MATLAB simulation, the scenario here is also com-
posed of three vehicles, one is the leader and the other two is the followers.
No obstacle is involved. The reference trajectory is illustrated in Figure 4.7
and 4.8. All sensors have zero-mean noise. To keep the fidelity of the sim-
ulation, Distributed MPC with different delay are tested. Instead of the
constant delay in MATLAB, delay is generated as the Gaussian distribution

26

Jianhao Zheng: Distributed MPC for leader-follower formation control

Figure 4.7: Top view of the reference trajectory in Webots-ROS. The leader
starts with point A, does the way-point following in alphabetical order and
comes back to point A. A to B takes 5 s and all rest segments take 12 s.

with standard deviation set to be 1, i.e. σ = 1 (sample time). Distributed
MPC with perfect communication, 3-sample-time-mean delay (the cloest to
real situation) and 10-sample-time-mean delay are tested.

Figure 4.8: Orthographic view of the reference trajectory.

4.3.2 Results and Discussion

The overall average relative formation error is shown in Table 4.3.2. The
error of velocity sharing based Distributed MPC increases with the mean of
communication delay. Even when the the mean of the delay reaches 10 time
step, which is nearly impossible in the reality, the overall formation error
of Decentralized MPC is still higher than that of the velocity sharing based
Distributed MPC.

Table 4.3: Overall average relative formation error.

- Decentralized
Distributed

(0 delay)
Distributed

(3 delay)
Distributed
(10 delay)

e 0.0415 0.0261 0.0286 0.0334

27

Jianhao Zheng: Distributed MPC for leader-follower formation control

Figure 4.9 shows the evolution of the average relative formation error.
Except the time near 8 s, the average formation error of Decentralized MPC
is higher than that of Distributed one even with presence of high delay.

The time when Distributed MPC has a higer error is corresponding to
the time when the agents arrived the way-point B in Figure 4.7 and start
to do an agile turning. Since the followers can get the future velocity of their
neighbors when controlled by Distributed MPC, they will know the future
turning and the huge deviation of formation displacement on x,y axis and
try to minimize that deviation as much as possible. In that case, they will
care less about the deviation on z axis, resulting to huge formation error
on z axis. The agents controlled by the decentralized MPC, however, don’t
have the future information of their neighbors. Thus, the formation error
on z axis will be kept small.

Figure 4.9: Average relative formation error in Webots-ROS.

Similar to our experience in the MATLAB simulation, the main differ-
ence of different controllers is in the leader to follower formation as we can
see in Figure 4.10. Moreover, with the increase of communication delay,
the performance of the Distributed MPC converges to that of the Decen-
tralized MPC especially in the leader to follower formation maintenance.

28

Jianhao Zheng: Distributed MPC for leader-follower formation control

Figure 4.10: Detailed formation maintenance errors in Webots-ROS.

29

Chapter 5 Conclusion

In this project, three types of Distributed MPC architectures are theo-
retically formulated for the leader-follower formation control problem and
implemented in MATLAB. According the simulation result in MATLAB, the
ADMM-based type has the best formation maintenance if using the same
solver and assuming perfect communication. Nevertheless, this type is very
sensitive to the communication quality and its performance is worse than
that of velocity sharing based type solved by ACADO. Considering both
solver and architecture performance, the velocity sharing based Distributed
MPC is selected to compare with the Decentralized MPC in the high-fidelity
framework consisting of the Webots simulator and ROS. Despite some spe-
cial moments, it turns out the Distributed MPC controller has less formation
error than the Decentralized MPC controller most of time.

Though the velocity sharing based type is chosen, the competition be-
tween this type and ADMM-based type is unfair. When using the same
solver the latter type has better performance in the condition of high com-
munication quality. One possible future work is try to find some more ef-
ficient nonlinear programming solver to implement the ADMM-based type.
Though the Webots simulator is already high-fidelity, the other future work
is to implement these Distributed controllers in real drones and validating
the results obtained in simulation experiments.

30

Bibliography

[1] M. Kamel, M. Burri, and R. Siegwart, “Linear vs nonlinear mpc for
trajectory tracking applied to rotary wing micro aerial vehicles,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 3463–3469, 2017.

[2] U. Eren, A. Prach, B. B. Koçer, S. V. Raković, E. Kayacan, and
B. Açıkmeşe, “Model predictive control in aerospace systems: Current
state and opportunities,” Journal of Guidance, Control, and Dynamics,
vol. 40, no. 7, pp. 1541–1566, 2017.

[3] H. Ebel, E. S. Ardakani, and P. Eberhard, “Distributed model predic-
tive formation control with discretization-free path planning for trans-
porting a load,” Robotics and Autonomous Systems, vol. 96, pp. 211–
223, 2017.

[4] I. K. Erunsal, A. Martinoli, and R. Ventura, “Decentralized nonlinear
model predictive control for 3d formation of multirotor micro aerial
vehicles with relative sensing and estimation,” in 2019 International
Symposium on Multi-Robot and Multi-Agent Systems (MRS), pp. 176–
178, IEEE, 2019.

[5] A. J. Marasco, S. N. Givigi, C. A. Rabbath, and A. Beaulieu, “Dynamic
encirclement of a moving target using decentralized nonlinear model
predictive control,” in 2013 American Control Conference, pp. 3960–
3966, IEEE, 2013.

[6] T. Chevet, C. Vlad, C. S. Maniu, and Y. Zhang, “Decentralized mpc
for uavs formation deployment and reconfiguration with multiple out-
going agents,” Journal of Intelligent & Robotic Systems, vol. 97, no. 1,
pp. 155–170, 2020.

[7] W. B. Dunbar and R. M. Murray, “Distributed receding horizon control
for multi-vehicle formation stabilization,” Automatica, vol. 42, no. 4,
pp. 549–558, 2006.

[8] J. Liu, X. Chen, D. Muñoz de la Peña, and P. D. Christofides, “Sequen-
tial and iterative architectures for distributed model predictive control

31

of nonlinear process systems,” AIChE Journal, vol. 56, no. 8, pp. 2137–
2149, 2010.

[9] R. Van Parys and G. Pipeleers, “Distributed mpc for multi-vehicle sys-
tems moving in formation,” Robotics and Autonomous Systems, vol. 97,
pp. 144–152, 2017.

[10] X. Hou, Y. Xiao, J. Cai, J. Hu, and J. E. Braun, “Distributed model
predictive control via proximal jacobian admm for building control ap-
plications,” in 2017 American Control Conference (ACC), pp. 37–43,
IEEE, 2017.

[11] S.-M. Lee, H. Kim, H. Myung, and X. Yao, “Cooperative coevolution-
ary algorithm-based model predictive control guaranteeing stability of
multirobot formation,” IEEE Transactions on Control Systems Tech-
nology, vol. 23, no. 1, pp. 37–51, 2014.

[12] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Mod-
eling, estimation, and control of quadrotor,” IEEE Robotics and Au-
tomation magazine, vol. 19, no. 3, pp. 20–32, 2012.

[13] Z. Cai, H. Zhou, J. Zhao, K. Wu, and Y. Wang, “Formation control of
multiple unmanned aerial vehicles by event-triggered distributed model
predictive control,” IEEE Access, vol. 6, pp. 55614–55627, 2018.

[14] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statis-
tical learning via the alternating direction method of multipliers. Now
Publishers Inc, 2011.

[15] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in MHS’95. Proceedings of the Sixth International Symposium
on Micro Machine and Human Science, pp. 39–43, Ieee, 1995.

[16] B. Houska, H. J. Ferreau, and M. Diehl, “Acado toolkitâan open-source
framework for automatic control and dynamic optimization,” Optimal
Control Applications and Methods, vol. 32, no. 3, pp. 298–312, 2011.

[17] B. Houska, H. J. Ferreau, and M. Diehl, “An auto-generated real-time
iteration algorithm for nonlinear mpc in the microsecond range,” Au-
tomatica, vol. 47, no. 10, pp. 2279–2285, 2011.

[18] H. J. Ferreau, T. Kraus, M. Vukov, W. Saeys, and M. Diehl, “High-
speed moving horizon estimation based on automatic code generation,”
in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC),
pp. 687–692, IEEE, 2012.

32

