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I. INTRODUCTION

This course project implements a full Visual Odometry
(VO) pipeline by integrating the knowledge we learn from
the lectures and exercises. The entire pipeline consists of
the initialization part and the continuous operation, which
is implemented basically by the recommended procedure.
We further add a form of sliding window bundle adjustment
(BA) to optimize the estimation. Despite the provided three
datasets, we also collected our dataset from a parking area
at EPFL and regions in the center of Lausanne. Our VO
pipeline works in all five datasets. In addition, we compute
the quantitative evaluation and benchmark the feature de-
tector methods and VO with/without pose refinement and
bundle adjustment. In summary, our main extra feature in-
cludes: topsep=0pt,itemsep=-1ex,partopsep=1ex,parsep=1ex

1) Implementation of bundle adjustment and provide both
quantitative and qualitative analysis on the improve-
ment from BA.

2) We collect two customized data sequences with careful
calibration and image pre-processing.

3) We present a quantitative benchmark over four popu-
lar feature detectors, i.e., SURF, BRISK, FAST, and
HARRIS.

The performance demonstration videos of our proposed
VO pipeline on three provided and two customized data
sequences are uploaded to this link.

II. METHOD

A. Initialization

In the initialization part, we follow the recommended
procedure. We first manually choose two distant frames at
the beginning to generalize a point cloud of landmarks. For
all datasets, the first frame I1 and the third frame I3 are
selected. We then extract features from the frame I1 with
SURF feature detector. These features are tracked in the
frame I3 by KLT tracking. Then, we establish key points
matching between I1 and I3.

With the matched key points, we utilize the eight-point
algorithm with RANSAC to filter outliers and estimate the
relative camera pose between I1 and I3. With the knowledge
from exercise 6, we can triangulate the matched key points
and obtain a landmark point cloud.
Remark 1 One of the extensions that we add is a pro-
cedure to filter landmarks based on their depth to the
camera of frame I3. We empirically set a range of depth

Dvalid = [dmin, dmax] for each dataset. Every newly
triangulated landmark will be translated to the camera coor-
dinate of frame I3, i.e. PC3 = TC3,W ∗PW . Only those land-
marks whose depth is in the given range, PC3(3) ∈ Dvalid

will be appended to the initialized point cloud. By adding
this procedure, points too far from the camera with high
uncertainty are filtered out. Similarly, points that are wrongly
triangulated behind the camera frame are deleted to reduce
possible errors.

B. Continuous operation
In continuous operation, we implement similar extensions

with several of our extensions. To briefly summarize, we first
track the key points of the last frame by KLT. With the pixel
positions of the key points in the current image and their
3D coordinates, we use the P3P algorithm with RANSAC
to filter outliers and estimate the absolute camera pose of
the current frame. In order to keep the number of existing
landmarks, we extract features from each new frame and
append those new features whose distance to any of existing
candidates or key points are larger than a given threshold
rth. The pixel position in the frame which first observe it
and the pose matrix of that frame is stored for every new key
point. In the future frame, we track the candidates with KLT.
For those tracked candidates, they will be triangulated and
appended to existing landmarks as long as the angle α(c) in
figure 1 is greater than a tuned threshold αth.

Figure 1: Illustration of the angle α(c). Directly copied
from project statement.
Remark 2 One extension we add after estimating the current
pose by P3P is to refine the estimated camera pose by
minimizing the reprojection error:

argmin
Tj∈SE(3)

nj∑
i=1

∥K ∗ Tj ∗ P̄i − p̄i∥2 (1)

https://www.youtube.com/playlist?list=PLisWEer2ynw1Ws1_km6y-xXDAIyvJ9weM


where Tj is the translation matrix of frame j, K is the
intrinsic matrix, nj is the number of key points tracked,
P̄i = [PT

i , 1]T is the homogeneous 3D coordinate of
landmark i and p̄i = [pTi , 1]T is the homogeneous pixel
coordinate.

We optimize the equation 2 by the MATLAB function
lsqnonlin and set the camera pose estimated by the P3P
algorithm with RANSAC as the initial guess. A quantitative
comparison on this extension can be found in section IV.
Remark 3 Note that we also apply the depth-based filtering
procedure when we triangulate a new candidate key points
in the continuous operation.
Remark 4 Since the way to calculate the angle α(c) in
figure 1 not provided in the statement, we briefly describe
how we calculate this angle. For a candidate point i We
basically have the pixel coordinate in the current frame pic
and that in the first detected frame pif , the pose of the
current frame TW,C and that of the first frame TW,F . We
can get the translation between the first and current frame
TC,F = TW,C

−1∗TW,F . We can further obtained the relative
rotation matrix by RC,F = TC,F (1 : 3, 1 : 3). Then, the
angle can be computed as follow:

αi(c) = arccos(
P̄ i,F
C ∗ P̄ i,C

C

∥P̄ i,F
C ∥ ∗ ∥P̄ i,C

C ∥
) (2)

where P̄ i,F
C = RC,F ∗ K−1 ∗ [pif , 1]T is the normalized

homogeneous pixel coordinates at the first detected frame
(expressed in current frame coordinate) and P̄ i,C

C = K−1 ∗
[pic, 1]T is that at the current frame.

C. Bundle adjustment*

We define k to be the number of key frames we optimize
in BA and we sample the key frames with constant distance
kd since most of our test data set is in almost constant veloc-
ity. For each frame i we have the camera pose Ti,W and the
observation consisting of number of key points detected in
this frame, pixel coordinates of key points and key points in-
dices in point cloud Oi = [ki, (p

1
i )

T , ..., (pki
i )T , l1i , ..., l

ki
i ]T

(same notation as that in exercise 9 is used). We also has
the 3D coordinate of the landmarks P = [PT

1 , ..., PT
m]T .

Instead of doing BA every time a new frame comes,
we do BA only when a new key frame is reached.
Assuming the index of the first key frame is idx,
we have the following frames to be optimized F =
{Fidx, Fidx+1, ... , Fidx+kd

,Fidx+kd+1, Fidx+kd+2, ... ,
Fidx+(k−1)∗(kd+1)} where the key frame is in bolded. We
first optimize the key frames and the 3D coordinates of key
points detected in at least two key frames by the reprojection
error:

argmin
T0,...,Tf(k−1),Pvalid

k−1∑
i=0

kf(i)∑
j=1

∥K ∗ Tf(i) ∗ P̄lj
f(i)

− p̄jf(i)∥
2 (3)

where f(i) = idx + i ∗ (kd + 1) is the index of the ith
key frame and the Pvalid is the set of 3D coordinates of
key points detected in at least two key frames. Again, x̄ =
[xT , 1]T means the homogeneous form of vector x. We
implement this optimization by organizing the variables in
the same form as that in exercise 9 and directly use the
runBA function we implemented in exe 9.

After this step, we will optimize the translation
of the normal frames among the key frames, i.e.
{Fidx+1, ... , Fidx+kd

, Fidx+kd+2, ... , Fidx+(k−1)∗(kd+1)−1},
by reprojection error with the optimized 3D coordinate
of landmarks. The formulation for this step is similar to
equation 2.
Remark 5 Our BA approach succeeds in the parking dataset
and improves the performance of the VO pipeline. More
results and comparison can be found in section IV. However,
we find that when implementing this in the Kitti dataset,
the lsqnonlin function takes much time to compute and
outputs unreasonable results in some frames after 50 frames.
Even though it improves the estimation in the first 50
frames, it can not be implemented in the full Kitti dataset.
We conjecture this is because the Kitti dataset is more
challenging than the parking dataset. Thus, the reprojection
error is harder to be optimized.

III. CUSTOMIZED DATASET*

For this project, two customized data sequences are com-
piled to evaluate the proposed method in diversified scenrios,
i.e., epfl_parking and lausanne_center_nav.

A. Data collection

1) epfl_parking sequence is recorded with the open-
source toolkit for a Android phone with a wide-angle
camera len. To avoid motion blur, the Zhiyun Smooth
4 gimbal is used to mount the phone with 3 DOF
stabilization as shown in figure 2. The original data is
recorded at about 15.0 frames per second (FPS) with
4624x3475 pixels. The detailed camera calibration
procedure can be referred to Section III-B, and images
are resized and downsampled to about 3 FPS.

2) lausanne_center_nav sequence is recorded with
RealSense Depth Camera D435 mounted on a mobile
robot in Lausanne center street. The original data
is recorded at about 14 FPS with 640x480 pixels.
Because the camera is pre-calibrated, rectified images
and camera parameters are extracted from recorded
rosbag and downsampled to about 5 FPS.

Exemplary challenging factors in the sequences are shown
in figure 3. For the image from epfl_parking se-
quence, illumination has great changes when the view
from the entrance to the parking lot inside, leading the
key points dropping from 600 to 150. In terms of



(a) Recording calibration sequence with 
checkerboard when camera mounted on the gimbal

(b) The screenshot of the VideoIMUCapture app. The 
data is recorded with 4624x3472 pixels @15.0 FPS

Figure 2: Camera calibration with checkerboard

Figure 3: Challenging factors in customized data sequences: illumination variation from the entrance into the parking
lot (left, No. 26 frame in epfl_parking) and large moving object in the field of view (right, No. 57 frame in
lausanne_center_nav)

lausanne_center_nav sequence, some moving pedes-
trians from frame No.50 to No.60 occlude large areas of the
image, which poses great challenges to keypoint matching.

B. Camera calibration & image pre-processing

Two-step calibration is performed for the Android wide-
range camera. As shown in figure 2, the 7x6 checkerboard
pattern with a square size of 3 cm is used as the calibration
pattern. The kalibr 1 toolbox are utilized for camera and IMU
calibration. Besides, ffmpeg is used to downsample from
15/30 FPS to about 5 FPS before generating the processed
rosbag, which could reduce redundant information in the
dataset and reduce the runtime of the calibration.

For camera calibration, The camera system is fixed and
the calibration target is moved in front of the cameras
to obtain the calibration images. In this step, the pinhole
camera model and radial-tangential distortion model are
chosen for convenient processing for the VO pipeline and
processing images by using OpenCV or MATLAB. For
camera-IMU calibration, the checkerboard pattern is fixed,

1https://github.com/ethz-asl/kalibr

and the camera-imu system is moved in front of the target
to excite all IMU axes.

As a result, the maximum error in reprojected pixels is
less than 10.0, and the mean reprojection error in pixels is
1.97. For more details, please refer to the calibration folder2.

After calibration, image resizing and undistortion opera-
tions are performed on the original images. Compared to
original high-resolution images captured at high frequency,
images are subsized and downsampled into similar resolu-
tions as the provided datasets. For more details about data
collection and calibration, please refer to the code3.

C. Discussion
Compared to the established dataset for visual odometry

evaluation, our compiled data sequences lack a feasible
device to generate ground truth pose for benchmarking.
Therefore, only undistorted image sequences and calibrated
camera parameters are provided for qualitative evaluation.
For future work, the calibrated IMU data can also be used
for visual-inertial odometry for better pose estimation.

2Link to detailed calibration results
3GitHub repository for camera calibration and image preprocessing

https://github.com/ethz-asl/kalibr
https://github.com/Jianhao-zheng/Visual-Odometry-Pipeline/tree/master/data/epfl_parking/calibration
https://github.com/hibetterheyj/VideoIMUCapture-Android


IV. EXPERIMENTS

A. Evaluation metric

We follow the method described in the provided slides4

to compute the relative error. To briefly summarize, we take
different distance d ∈ D. For the frame Fd that has navigated
d [m] away from the first frame, we do the trajectory
alignment between the pose estimation from F1 to Fd and
the ground truth. Then, we calculate the relative error by:

err(d) = |∆t̂1,d −∆t1,d| (4)

where ∆t̂1,d = t̂d − t̂1 is the aligned estimated replacement
between frame Fd and F1 while ∆t1,d = td − t1 is the
ground truth. Note that | · | is the element-wise absolute
value function, not the vector normalization function.

B. Quantitative evaluation

Three quantitative comparisons have been performed for
our pipeline. We first compare the performance of our
VO with different feature detection methods. The second
evaluation is to compare the performance of VO with and
without pose refinement as described in remark 2. The last
one is to compare the result of VO with and without BA.
The first two experiments will be conducted on the Kitti
dataset since it is the popular benchmark dataset. As stated
above, BA cannot work in all the frames of Kitti, we do
the last comparison on the parking dataset. We conduct five
experiments for each single setting and report the mean and
std of the quantitative evaluation.
Feature detector benchmark We compare the VO perfor-
mance when using SURF, BRISK, FAST and HARRIS as
the feature detector. For a fair comparison, we first tune the
parameter of each detector to ensure that the number of key
points extracted from the first frame is similar for different
detectors. Any other settings are all kept the same. We do
the experiments on the Kitti dataset and choose the traveled
distance set D = {10m, 40m, 90m, 160m, 250m, 360m} to
compute the relative distance.

Figure 4 shows the relative error of three axes with
different feature detectors. One can observe that all the
methods perform close except BRISK suffers a bit in the
estimation on Z-axis. In general, we find the estimation with
SURF as the detector has slightly lower error. Moreover,
we provide the operation efficiency for our full VO pipeline
using different detectors (not just for detecting features). As
expected, FAST is the quickest one, while SURF outper-
forms the rest two in a substantial margin. Note that we all
activate the pose refinement for all the experiments in this
part. SURF (W/O PR) is for the incoming part.
Remark 6 Considering the result in this part, we utilize
SURF as our feature detector in the remaining experiments.

4Workshop report How to Run Reproduciable Visual SLAM Experiments
by Zichao Zhang, Davide Scaramuzza
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Figure 4: Relative error comparison among the proposed
VO pipeline with different feature detector methods (Best
view in color and zoomed in).

Table I: Operation efficiency with different features on
KITTI seq05 sequence. FPS stands for frame per second.

Methods SURF SURF (W/O PR) BRISK FAST Harris

FPS 4.09 ± 0.24 4.11 ± 0.24 3.35 ± 0.02 4.24 ± 0.10 3.81 ± 0.03

Evaluation on pose refinement Figure 5 shows the evalu-
ation on our VO pipeline with and without pose refinement
after computing camera pose by P3P with RANSAC. In gen-
eral, activating pose refinement improves the performance
of the full VO pipeline, especially in the Y-axis, which is
supposed to be 0 all the time. If we do not activate pose
refinement, the estimated pose in the Y-axis starts to have
error closer to 10 m. Moreover, the standard deviation of the
error along Y and Z axes has been significantly reduced by
pose refinement. Thus, the estimation can be more robust
and stable if using such refinement.

In table I, one can observe an interesting finding that VO
with pose refinement (SURF) is a bit faster than that without

https://www.dropbox.com/s/6lc47rrkjfsdqab/ICRA17_Zhang_reproducible_workshop.pptx
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Figure 5: Relative error comparison on the proposed VO
pipeline with and without pose refinement (Best view in
color and zoomed in).

refinement (SURF (W/O PR)). We think this is because the
computational time cost by pose refinement is trivial, and
the fact that VO with refinement is fast in our evaluation is
just due to the uncertainty of the measurement.
Evaluation on pose bundle adjustment

For evaluation on the effect of BA, we do the test
on the parking dataset since BA cannot continue in the
Kitti dataset as stated in section II. The traveled dis-
tance set to compute the relative distance is chosen as
D′ = {2m, 8m, 18m, 32m, 50m, 72m} The comparison on
whether BA is activated or not can be found in figure 6. The
error significantly reduces when BA is utilized. Note that
the error of VO with BA in Y-axis is more or less similar
to that without BA. However, the Y-axis’s error scale is far
smaller than the other two. The errors of the two methods
in the Y-axis are all acceptable. Thus, we should focus on
comparing error on X and Z axes where we can observe the
improvement brought by BA.
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Figure 6: Relative error comparison on VO with and
without bundle adjustment (Best view in color and zoomed
in).

As we can see in table II, adding BA, however, reduces
the computational speed a lot. Whether activating BA in the
VO pipeline is a trade-off on the computational power in
hand and the accuracy required.

Table II: Operation efficiency with or without bundle adjust-
ment on parking sequence

Methods SURF (With BA) SURF

FPS 1.68 ± 0.11 4.56 ± 0.04

C. Qualitative evaluation

Key points matching. Figure 7 shows the key points
detected in the first frame of the Kitti dataset, while we
report the matched positions on the third frame by KLT.
The result shows that just few points is failed to be tracked.
In Figure 9, we can observe the inliners estimated by the
eight-point algorithm with RANSAC, where one can find



that lots of matched key points in featureless regions, such
as shadows and road, are eliminated as outliers.

Figure 7: The keypoints detected in the first frame of KITTI
seq05 sequence by SURF detector.

Figure 8: Valid keypoints tracked in the third frame of
KITTI seq05 sequence by KLT.

Figure 9: Inlier keypoints remained after RANSAC.

Full trajectory. Figure 10 to figure 12 shows the estimated
trajectory, aligned trajectory, and the ground truth over 10
m, 160 m, and 360 m away from the first starting points.
From figure 10, we can find that our aligned estimation is
highly accurate in the local (short) movement. The scale of
the movement starts to drift when it moves 160 m far as
can be seen in figure 11. However, the rotation is still being
estimated accurately as the aligned trajectory is very close
to the ground truth in the term of direction. In figure 12,
the scale drift degrades the performance furthermore, while
the rotation estimation is relatively accurate. Since we only
implement VO without other sensor information, the estima-
tion inevitably suffers from scale ambiguity. Thus, the scale
drift is reasonable in our case.
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Figure 10: Estimated, aligned and ground truth of trajectory
after navigating 10 m since the first frame (Kitti).
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Figure 11: Estimated, aligned and ground truth of trajectory
after navigating 160 m since the first frame (Kitti).

Bundle adjustment. We present the aligned estimated tra-
jectory and the ground truth of the parking dataset for VO
with and without BA in figure 14 and figure 13. Note that we
do not plot the original estimated trajectory to present a clear
comparison as the original one may occlude some part of
the ground truth. From the comparison, we can see that the
estimation by VO with BA outperforms that without BA in
a clear margin. The estimation by VO with BA has almost
no error compared to the ground truth, while without BA
generates a clear curve-like trajectory instead of a straight
line. Moreover, the starting point and ending point estimation
without BA does not align with the ground truth due to
its larger-scale drift. Our qualitative result is also consistent
with our findings in the quantitative result.
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Figure 12: Estimated, aligned and ground truth of trajectory
after navigating 360 m since the first frame (Kitti).
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Figure 13: Aligned and ground truth of trajectory after
navigating 72 m since the first frame without BA (parking).
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Figure 14: Aligned and ground truth of trajectory after
navigating 72 m since the first frame with BA (parking).

Video recording. For the three provided data set and our
two customized datasets, we have recorded videos to show
the performance of our VO pipeline. These videos can be
found in this link.

V. CONCLUSION AND LIMITATIONS

In conclusion, we successfully implemented the full VO
pipeline based on the recommended procedure. We also
added several additional features such as pose refinement,

bundle adjustment, customized datasaet, quantitative evalu-
ation, and benchmark test for feature detectors. The most
time-consuming part of this project is finding suitable pa-
rameters and finding bugs. We find that even many small
bugs can accumulate to make the full pipeline performs
far worse. It is quite important to ensure each part is in
high quality. However, it is still very accomplished for us
when seeing our VO generate an accurate estimation. The
only pity is that we could not let BA work on the Kitti
dataset. Possible future works are trying to figure out why
lsqnonlin takes so long time in some frames and try the
bundleAdjustment function from MATLAB.

https://www.youtube.com/playlist?list=PLisWEer2ynw1Ws1_km6y-xXDAIyvJ9weM

	Introduction
	Method
	Initialization
	Continuous operation
	Bundle adjustment*

	Customized dataset*
	Data collection
	Camera calibration & image pre-processing
	Discussion

	Experiments
	Evaluation metric
	Quantitative evaluation
	Qualitative evaluation

	Conclusion and Limitations

